Amateur Telescopes

Everything you need for your hobby


Search this Site
Discount Shop
Information Centre


In our sketch of the life of Flamsteed, we have referred to the circumstances under which the famous Observatory that crowns Greenwich Hill was founded. We have also had occasion to mention that among the illustrious successors of Flamsteed both Halley and Bradley are to be included. But a remarkable development of Greenwich Observatory from the modest establishment of early days took place under the direction of the distinguished astronomer whose name is at the head of this chapter. By his labours this temple of science was organised to such a degree of perfection that it has served in many respects as a model for other astronomical establishments in various parts of the world. An excellent account of Airy's career has been given by Professor H. H. Turner, in the obituary notice published by the Royal Astronomical Society. To this I am indebted for many of the particulars here to be set down concerning the life of the illustrious Astronomer Royal.

The family from which Airy took his origin came from Kentmere, in Westmoreland. His father, William Airy, belonged to a Lincolnshire branch of the same stock. His mother's maiden name was Ann Biddell, and her family resided at Playford, near Ipswich. William Airy held some small government post which necessitated an occasional change of residence to different parts of the country, and thus it was that his son, George Biddell, came to be born at Alnwick, on 27th July, 1801. The boy's education, so far as his school life was concerned was partly conducted at Hereford and partly at Colchester. He does not, however, seem to have derived much benefit from the hours which he passed in the schoolroom. But it was delightful to him to spend his holidays on the farm at Playford, where his uncle, Arthur Biddell, showed him much kindness. The scenes of his early youth remained dear to Airy throughout his life, and in subsequent years he himself owned a house at Playford, to which it was his special delight to resort for relaxation during the course of his arduous career. In spite of the defects of his school training he seems to have manifested such remarkable abilities that his uncle decided to enter him in Cambridge University. He accordingly joined Trinity College as a sizar in 1819, and after a brilliant career in mathematical and physical science he graduated as Senior Wrangler in 1823. It may be noted as an exceptional circumstance that, notwithstanding the demands on his time in studying for his tripos, he was able, after his second term of residence, to support himself entirely by taking private pupils. In the year after he had taken his degree he was elected to a Fellowship at Trinity College.

Having thus gained an independent position, Airy immediately entered upon that career of scientific work which he prosecuted without intermission almost to the very close of his life. One of his most interesting researches in these early days is on the subject of Astigmatism, which defect he had discovered in his own eyes. His investigations led him to suggest a means of correcting this defect by using a pair of spectacles with lenses so shaped as to counteract the derangement which the astigmatic eye impressed upon the rays of light. His researches on this subject were of a very complete character, and the principles he laid down are to the present day practically employed by oculists in the treatment of this malformation.

On the 7th of December, 1826, Airy was elected to the Lucasian Professorship of Mathematics in the University of Cambridge, the chair which Newton's occupancy had rendered so illustrious. His tenure of this office only lasted for two years, when he exchanged it for the Plumian Professorship. The attraction which led him to desire this change is doubtless to be found in the circumstance that the Plumian Professorship of Astronomy carried with it at that time the appointment of director of the new astronomical observatory, the origin of which must now be described.

Those most interested in the scientific side of University life decided in 1820 that it would be proper to found an astronomical observatory at Cambridge. Donations were accordingly sought for this purpose, and upwards of 6,000 pounds were contributed by members of the University and the public. To this sum 5,000 pounds were added by a grant from the University chest, and in 1824 further sums amounting altogether to 7,115 pounds were given by the University for the same object. The regulations as to the administration of the new observatory placed it under the management of the Plumian Professor, who was to be provided with two assistants. Their duties were to consist in making meridian observations of the sun, moon, and the stars, and the observations made each year were to be printed and published. The observatory was also to be used in the educational work of the University, for it was arranged that smaller instruments were to be provided by which students could be instructed in the practical art of making astronomical observations.

The building of the Cambridge Astronomical Observatory was completed in 1824, but in 1828, when Airy entered on the discharge of his duties as Director, the establishment was still far from completion, in so far as its organisation was concerned. Airy commenced his work so energetically that in the next year after his appointment he was able to publish the first volume of "Cambridge Astronomical Observations," notwithstanding that every part of the work, from the making of observations to the revising of the proof-sheets, had to be done by himself.

It may here be remarked that these early volumes of the publications of the Cambridge Observatory contained the first exposition of those systematic methods of astronomical work which Airy afterwards developed to such a great extent at Greenwich, and which have been subsequently adopted in many other places. No more profitable instruction for the astronomical beginner can be found than that which can be had by the study of these volumes, in which the Plumian Professor has laid down with admirable clearness the true principles on which meridian work should be conducted.

Airy gradually added to the instruments with which the observatory was originally equipped. A mural circle was mounted in 1832, and in the same year a small equatorial was erected by Jones. This was made use of by Airy in a well-known series of observations of Jupiter's fourth satellite for the determination of the mass of the great planet. His memoir on this subject fully ex pounds the method of finding the weight of a planet from observations of the movements of a satellite by which the planet is attended. This is, indeed, a valuable investigation which no student of astronomy can afford to neglect. The ardour with which Airy devoted himself to astronomical studies may be gathered from a remarkable report on the progress of astronomy during the present century, which he communicated to the British Association at its second meeting in 1832. In the early years of his life at Cambridge his most famous achievement was connected with a research in theoretical astronomy for which consummate mathematical power was required. We can only give a brief account of the Subject, for to enter into any full detail with regard to it would be quite out of the question.

Venus is a planet of about the same size and the same weight as the earth, revolving in an orbit which lies within that described by our globe. Venus, consequently, takes less time than the earth to accomplish one revolution round the sun, and it happens that the relative movements of Venus and the earth are so proportioned that in the time in which our earth accomplishes eight of her revolutions the other planet will have accomplished almost exactly thirteen. It, therefore, follows that if the earth and Venus are in line with the sun at one date, then in eight years later both planets will again be found at the same points in their orbits. In those eight years the earth has gone round eight times, and has, therefore, regained its original position, while in the same period Venus has accomplished thirteen complete revolutions, and, therefore, this planet also has reached the same spot where it was at first. Venus and the earth, of course, attract each other, and in consequence of these mutual attractions the earth is swayed from the elliptic track which it would otherwise pursue. In like manner Venus is also forced by the attraction of the earth to revolve in a track which deviates from that which it would otherwise follow. Owing to the fact that the sun is of such preponderating magnitude (being, in fact, upwards of 300,000 times as heavy as either Venus or the earth), the disturbances induced in the motion of either planet, in consequence of the attraction of the other, are relatively insignificant to the main controlling agency by which each of the movements is governed. It is, however, possible under certain circumstances that the disturbing effects produced upon one planet by the other can become so multiplied as to produce peculiar effects which attain measurable dimensions. Suppose that the periodic times in which the earth and Venus revolved had no simple relation to each other, then the points of their tracks in which the two planets came into line with the sun would be found at different parts of the orbits, and consequently the disturbances would to a great extent neutralise each other, and produce but little appreciable effect. As, however, Venus and the earth come back every eight years to nearly the same positions at the same points of their track, an accumulative effect is produced. For the disturbance of one planet upon the other will, of course, be greatest when those two planets are nearest, that is, when they lie in line with the sun and on the same side of it. Every eight years a certain part of the orbit of the earth is, therefore, disturbed by the attraction of Venus with peculiar vigour. The consequence is that, owing to the numerical relation between the movements of the planets to which I have referred, disturbing effects become appreciable which would otherwise be too small to permit of recognition. Airy proposed to himself to compute the effects which Venus would have on the movement of the earth in consequence of the circumstance that eight revolutions of the one planet required almost the same time as thirteen revolutions of the other. This is a mathematical inquiry of the most arduous description, but the Plumian Professor succeeded in working it out, and he had, accordingly, the gratification of announcing to the Royal Society that he had detected the influence which Venus was thus able to assert on the movement of our earth around the sun. This remarkable investigation gained for its author the gold medal of the Royal Astronomical Society in the year 1832.

In consequence Of his numerous discoveries, Airy's scientific fame had become so well recognised that the Government awarded him a special pension, and in 1835, when Pond, who was then Astronomer Royal, resigned, Airy was offered the post at Greenwich. There was in truth, no scientific inducement to the Plumian Professor to leave the comparatively easy post he held at Cambridge, in which he had ample leisure to devote himself to those researches which specially interested him, and accept that of the much more arduous observatory at Greenwich. There were not even pecuniary inducements to make the change; however, he felt it to be his duty to accede to the request which the Government had made that he would take up the position which Pond had vacated, and accordingly Airy went to Greenwich as Astronomer Royal on October 1st, 1835.

He immediately began with his usual energy to organise the systematic conduct of the business of the National Observatory. To realise one of the main characteristics of Airy's great work at Greenwich, it is necessary to explain a point that might not perhaps be understood without a little explanation by those who have no practical experience in an observatory. In the work of an establishment such as Greenwich, an observation almost always consists of a measurement of some kind. The observer may, for instance, be making a measurement of the time at which a star passes across a spider line stretched through the field of view; on another occasion his object may be the measurement of an angle which is read off by examining through a microscope the lines of division on a graduated circle when the telescope is so pointed that the star is placed on a certain mark in the field of view. In either case the immediate result of the astronomical observation is a purely numerical one, but it rarely happens, indeed we may say it never happens, that the immediate numerical result which the observation gives expresses directly the quantity which we are really seeking for. No doubt the observation has been so designed that the quantity we want to find can be obtained from the figures which the measurement gives, but the object sought is not those figures, for there are always a multitude of other influences by which those figures are affected. For example, if an observation were to be perfect, then the telescope with which the observation is made should be perfectly placed in the exact position which it ought to occupy; this is, however, never the case, for no mechanic can ever construct or adjust a telescope so perfectly as the wants of the astronomer demand. The clock also by which we determine the time of the observation should be correct, but this is rarely if ever the case. We have to correct our observations for such errors, that is to say, we have to determine the errors in the positions of our telescopes and the errors in the going of our clocks, and then we have to determine what the observations would have been had our telescopes been absolutely perfect, and had our clocks been absolutely correct. There are also many other matters which have to be attended to in order to reduce our observations so as to obtain from the figures as yielded to the observer at the telescope the actual quantities which it is his object to determine.

The work of effecting these reductions is generally a very intricate and laborious matter, so that it has not unfrequently happened that while observations have accumulated in an observatory, yet the tedious duty of reducing these observations has been allowed to fall into arrear. When Airy entered on his duties at Greenwich he found there an enormous mass of observations which, though implicitly containing materials of the greatest value to astronomers, were, in their unreduced form, entirely unavailable for any useful purpose. He, therefore, devoted himself to coping with the reduction of the observations of his predecessors. He framed systematic methods by which the reductions were to be effected, and he so arranged the work that little more than careful attention to numerical accuracy would be required for the conduct of the operations. Encouraged by the Admiralty, for it is under this department that Greenwich Observatory is placed, the Astronomer Royal employed a large force of computers to deal with the work. BY his energy and admirable organisation he managed to reduce an extremely valuable series of planetary observations, and to publish the results, which have been of the greatest importance to astronomical investigation.

The Astronomer Royal was a capable, practical engineer as well as an optician, and he presently occupied himself by designing astronomical instruments of improved pattern, which should replace the antiquated instruments he found in the observatory. In the course of years the entire equipment underwent a total transformation. He ordered a great meridian circle, every part of which may be said to have been formed from his own designs. He also designed the mounting for a fine equatorial telescope worked by a driving clock, which he had himself invented. Gradually the establishment at Greenwich waxed great under his incessant care. It was the custom for the observatory to be inspected every year by a board of visitors, whose chairman was the President of the Royal Society. At each annual visitation, held on the first Saturday in June, the visitors received a report from the Astronomer Royal, in which he set forth the business which had been accomplished during the past year. It was on these occasions that applications were made to the Admiralty, either for new instruments or for developing the work of the observatory in some other way. After the more official business of the inspection was over, the observatory was thrown open to visitors, and hundreds of people enjoyed on that day the privilege of seeing the national observatory. These annual gatherings are happily still continued, and the first Saturday in June is known to be the occasion of one of the most interesting reunions of scientific men which takes place in the course of the year.

Airy's scientific work was, however, by no means confined to the observatory. He interested himself largely in expeditions for the observation of eclipses and in projects for the measurement of arcs on the earth. He devoted much attention to the collection of magnetic observations from various parts of the world. Especially will it be remembered that the circumstances of the transits of Venus, which occurred in 1874 and in 1882, were investigated by him, and under his guidance expeditions were sent forth to observe the transits from those localities in remote parts of the earth where observations most suitable for the determination of the sun's distance from the earth could be obtained. The Astronomer Royal also studied tidal phenomena, and he rendered great service to the country in the restoration of the standards of length and weight which had been destroyed in the great fire at the House of Parliament in October, 1834. In the most practical scientific matters his advice was often sought, and was as cheerfully rendered. Now we find him engaged in an investigation of the irregularities of the compass in iron ships, with a view to remedying its defects; now we find him reporting on the best gauge for railways. Among the most generally useful developments of the observatory must be mentioned the telegraphic method for the distribution of exact time. By arrangement with the Post Office, the astronomers at Greenwich despatch each morning a signal from the observatory to London at ten o'clock precisely. By special apparatus, this signal is thence distributed automatically over the country, so as to enable the time to be known everywhere accurately to a single second. It was part of the same system that a time ball should be dropped daily at one o'clock at Deal, as well as at other places, for the purpose of enabling ship's chronometers to be regulated.

Airy's writings were most voluminous, and no fewer than forty- eight memoirs by him are mentioned in the "Catalogue of Scientific Memoirs," published by the Royal Society up to the year 1873, and this only included ten years out of an entire life of most extraordinary activity. Many other subjects besides those of a purely scientific character from time to time engaged his attention. He wrote, for instance, a very interesting treatise on the Roman invasion of Britain, especially with a view of determining the port from which Caesar set forth from Gaul, and the point at which he landed on the British coast. Airy was doubtless led to this investigation by his study of the tidal phenomena in the Straits of Dover. Perhaps the Astronomer Royal is best known to the general reading public by his excellent lectures on astronomy, delivered at the Ipswich Museum in 1848. This book has passed through many editions, and it gives a most admirable account of the manner in which the fundamental problems in astronomy have to be attacked.

As years rolled by almost every honour and distinction that could be conferred upon a scientific man was awarded to Sir George Airy. He was, indeed, the recipient of other honours not often awarded for scientific distinction. Among these we may mention that in 1875 he received the freedom of the City of London, "as a recognition of his indefatigable labours in astronomy, and of his eminent services in the advancement of practical science, whereby he has so materially benefited the cause of commerce and civilisation."

Until his eightieth year Airy continued to discharge his labours at Greenwich with unflagging energy. At last, on August 15th, 1881, he resigned the office which he had held so long with such distinction to himself and such benefit to his country. He had married in 1830 the daughter of the Rev. Richard Smith, of Edensor. Lady Airy died in 1875, and three sons and three daughters survived him. One daughter is the wife of Dr. Routh, of Cambridge, and his other daughters were the constant companions of their father during the declining years of his life. Up to the age of ninety he enjoyed perfect physical health, but an accidental fall which then occurred was attended with serious results. He died on Saturday, January 2nd, 1892, and was buried in the churchyard at Playford.

Amateur Telescopes

Everything you need for your hobby